Catalog Advanced Search

Us Blog

FISH in molecular cancer diagnostics: the whats and whys?

Fluorescence in situ hybridization (FISH) – a relatively new cytogenetic technique - is a DNA hybridization-based technique that generally uses directly-labeled fluorescent DNA probes to target specific chromosomal locations within the nucleus, resulting in colored signals that can be detected using a fluorescent microscope. Alternatively, FISH probes can be indirectly labeled with reporter molecules that are subsequently detected by fluorescent antibodies or other affinity molecules.

FISH is applied to detect genetic aberrations including

  • Characteristic gene fusions or translocations
  • Characteristic gene rearrangements
  • Partial or complete loss of chromosome
  • Presence of an abnormal number of chromosomes in a cell

Hence FISH can be applied to diseases covering genetic etiologies as well as cancer –both hematological and solid tumors. Additionally FISH can be applied to basic research applications like gene mapping or in discovery based assays like elucidation of novel oncogenes. Furthermore it can be used to aid in novel biomarker discovery. FISH has now been expanded to screen/analyze whole genome in one-go (in single experiment) using multicolor whole chromosome probe techniques like multiplex FISH or spectral karyotyping.

Read More

Xmatrx® Elite – All-in-One & All-at-Once complete workflow solution! - For Your Tissue Diagnostics Needs!!

High-throughput and automation are the keywords in any cancer diagnostic lab – our Xmatrx® series are just that and more! Xmatrx Elite is versatile for any slide-based staining – IHC, ISH, FISH, multiplex IHC, in situ PCR, micro-RNA, and special staining (SS). Crisp and reliable staining result! Everytime!


Read More

i6000 – the workhorse of a pathology lab! - (Interface for both clinical and research diagnostics)

When it comes to cancer diagnostics, tissue-based staining is still the gold standard of diagnostic workflow. And when there are thousands of cancer patients – worldwide - waiting eagerly for “their life and death question”, there is no luxury of time! Everyday there could be hundreds of samples waiting to be tested – and so some form of automation and high-throughput becomes mandatory.

Enter the semi-automatic workhorse of cancer diagnostics – the BioGenex i6000TM system. The BioGenex i6000 Elite Dx is a semi-automated, high-throughput, multiplex IHC system that is flexible, efficient and value for the bucks!

Read More

Celebrities and Cancer: Courage – Strength – Faith

Part 1: The political figures

“In God we trust. All others [must] have data. - Bernard Fisher”

Bernard Fisher was an eminent breast cancer surgeon and researcher who pioneered many innovative techniques in breast cancer.

The latter half of the last century has seen an unprecedented success of cancer treatment – thanks to extensive and innovative biomedical research! We have come a long way since radiation therapy almost a century ago – 1950s saw the first approved chemo regimen - this was followed by a boom in research bucks for expansive cancer research – 1990s actually witnessed a decline in cancer deaths for the first time in history – then at the turn of century we have biologics for cancer therapy that had almost changed the new landscape of cancer treatment. This has been made possible thanks to years and years of dedicated team of scientists and clinicians – nurses and caregivers – patients and advocates who had patiently and painstakingly churned out heaps and heaps of research and data – striving to end the elusive and dreaded plague called cancer – and how!

Read More

Integrated analysis in cancer diagnostics: why miRNA is better than mRNA?

Cancer networks are specific, contextual, dynamic and interactive! The best way to delineate complex cancer networks is to integrate both transcriptomics (mRNA) expression profile as well as miRNA expression profile – this imparts both the functional and regulatory messages in a cancer context.  However, recent spate of miRNA analysis in the elucidation of cancer networks suggests specific and distinct advantages of miRNA profiling over mRNA signatures – both biological and technical.

Read More

miRNA probes for cancer diagnostics – What BioGenex offers?

miRNA biology

microRNAs or miRNAs are small, ~21-24 nucleotides long, specialized, ubiquitously expressed and evolutionary conserved cellular RNAs that have numerous roles in cellular functions ranging from developmental and stem cell to aging, immunity and cancer. First discovered in nematodes, it has been found in almost all classes of organisms wherein they function as part of cellular networks cross-talking with multiple target mRNAs, thus affecting post-transcriptional machinery of the cell. MicroRNAs are precisely regulated (both spatially and temporally) in these cellular functions. Recently, microRNAs have been touted as promising agents in clinical diagnostics and therapeutics especially in the cancer domain.

Read More

Cancer of Unknown Primary (CUP)

Definition

CUPs (Cancers of unknown Primary) are generally defined as a mixed cluster of metastatic tumors disseminated from unknown sites. It is currently challenging to ascertain the site of origin (tissue) by means of a standardized diagnostic clinical approach. About 3%–5% of all malignancies are considered CUP. Because the origin of malignancy is not known, it becomes challenging to devise a clinically appropriate and successful treatment regimen.

Read More

PD-1 and PD-L1 Antibodies - Immune Checkpoint Biomarkers

As we step into the era of personalized medicine, we need to characterize and validate novel cancer targets precisely – not just for therapeutic purpose but as diagnostic biomarkers. The tumor is no longer just diagnosed by morphology but by immunohistochemistry and other molecular patterns – in a multiplex and high-throughput technology platform. Cancer biomarkers are of different kinds ranging from DNA, RNA, RNAi, and protein. Amongst the protein markers, there are immune molecules (ligands or surface receptors) that are expressed specifically in a cancer context, either in pre-cancerous cells or cancerous cells or in combative immune cells (1).

Read More

IHC Staining in an Independent Assessment - BioGenex International

The Synaptophysin (SYN) gene is located on the short arm of the X chromosome. Mutations in this gene are associated with X-linked mental retardation (XLMR). The SYN gene product is a 38 kD glycoprotein that is localized to the membrane of synaptic vesicles. Using immunohistochemistry, synaptophysin can be identified in a range of neural and neuroendocrine tissues, including neurons of the central nervous system, cells of the adrenal medulla, thyroid and pancreatic islets. As a specific marker for these tissues, it can be used to identify tumors originating from them, such as neuroblastoma, retinoblastoma, phaeochromocytoma, carcinoid, small-cell carcinoma, medulloblastoma and medullary thyroid carcinoma.

Read More

Detection & Prevention of Colorectal Cancer - BioGenex US

Colorectal cancer (CRC) is the second leading cause of cancer death in the United States with an estimated 50,000 deaths in 2016. Colonoscopy is the leading CRC screening strategy, and there is strong evidence that the removal of polyps detected by colonoscopy can prevent the development of CRC. However, colonoscopy screenings only provide partial protection due to the limitations of current polyp detection techniques and human factors such as the skill of the endoscopist.  These contribute to diagnostic miss rates of up to 25%. In a new study published in Nature Medicine, an international team of researchers used the BioGenex automated molecular pathology staining system to develop a fluorescence colonoscopy technique that can accurately identify a polyp biomarker (i.e. c-Met) and thus improve polyp detection during colonoscopy screenings.

Read More

Subscribe to Blog

Recent Posts